Advent Calendar 2024
| Day 22 | Day 23 | Day 24 |
The gift is presented by Luca Ferrari
. Today he is talking about his solution to The Weekly Challenge - 298. This is re-produced for Advent Calendar 2024
from the original post.
Perl Weekly Challenge 298
This post presents my solutions to the Perl Weekly Challenge 298
.
I keep doing the Perl Weekly Challenge
in order to mantain my coding skills in good shape, as well as in order to learn new things, with particular regard to Raku
, a language that I love.
The PL/Perl
implementations are very similar to a pure Perl
implementation, even if the PostgreSQL
environment could involve some more constraints. Similarly, the PL/PgSQL
implementations help me keeping my PostgreSQL
programming skills in good shape.
Task #1: Raku Implementations
The first task was about to find the biggest square made only by 1s in a binary value matrix.
sub MAIN() {
my @matrix = [1, 0, 1, 0, 0],
[1, 0, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 0, 0, 1, 0];
my @sizes;
for 0 ..^ @matrix.elems -> $row {
for 0 ..^ @matrix[ $row ].elems -> $col {
next if @matrix[ $row ][ $col ] != 1;
my $size = 1;
my $found = True;
while ( $found ) {
if ( $col + $size >= @matrix[ $row ].elems || $row + $size >= @matrix.elems ) {
$found = False;
$size--;
last;
}
if ( @matrix[ $row .. $row + $size ][ $col .. $col + $size ].grep( * !~~ 1 ) ) {
$found = False;
$size = $size - 1;
last;
}
else {
$size++;
}
}
@sizes.push: $size;
}
}
@sizes.max.say;
}
My idea, used also in all the other implementations, is to place the top leftmost corner of the square on the current cell I’m analyzing. Therefore, having placed the top leftmost corner, I can splice the array/matrix into a list of bits, that must be all 1s. I gradually increases the $size to check the square.
Task #2: Raku Implementations
The second task was about finding the index of interval that has a beginning position lowest that matches another interval.
sub MAIN() {
my @intervals = [ 3, 4 ],
[ 2, 3 ],
[ 1, 2 ];
my @right;
for 0 ..^ @intervals.elems -> $current {
my %found;
for 0 ..^ @intervals.elems -> $next {
next if ( @intervals[ $current ][ 0 ] == @intervals[ $next ][ 0 ]
&& @intervals[ $current ][ 1 ] == @intervals[ $next ][ 1 ] );
%found{ @intervals[ $next ][ 0 ] }.push: $next if ( @intervals[ $next ][ 0 ] >= @intervals[ $current ][ 1 ] );
}
@right.push: -1 and next if ( ! %found );
@right.push: %found{ %found.keys.min };
}
@right.join( ',' ).say;
}
My implementation is surely too much complex: I evaluate every array in the @intervals
, than place the value and the index into the %found
hash, and the smallest one into the final @right
array.
Task #1: PL/Perl Implementations
The implementation is the same as in Raku
.
CREATE OR REPLACE FUNCTION
pwc298.task1_plperl( int[][] )
RETURNS int
AS $CODE$
my ( $matrix ) = @_;
my @sizes;
for my $row ( 0 .. $matrix->@* - 1 ) {
for my $col ( 0 .. $matrix->[ $row ]->@* - 1 ) {
next if ( $matrix->[ $row ][ $col ] != 1 );
my ( $size, $found ) = ( 2, 1 );
while ( $found ) {
if ( $col + $size >= $matrix->[ $row ]->@* || $row + $size >= $matrix->@* ) {
$found = 0;
$size--;
last;
}
if ( grep( { $_ != 1 } $matrix->@[ $row .. $row + $size ]->@[ $col .. $col + $size ] ) ) {
$found = 0;
$size--;
last;
}
else {
$size++;
}
}
push @sizes, $size;
}
}
return ( sort( @sizes ) )[ -1 ];
$CODE$
LANGUAGE plperl;
Task #2: PL/Perl Implementations
Similar implementation to the Raku
one, but here I use a couple of values to keep track of the “minimal interval”
, that is then pushed into an array.
CREATE OR REPLACE FUNCTION
pwc298.task2_plperl( int[] )
RETURNS int[]
AS $CODE$
my ( $intervals ) = @_;
my @right;
for my $current ( 0 .. $intervals->@* - 1 ) {
my $min = undef;
my $found_index = undef;
for my $other ( 0 .. $intervals->@* - 1 ) {
next if ( $other == $current );
if ( $intervals->[ $other ]->[ 0 ] >= $intervals->[ $current ]->[ 1 ] ) {
if ( ! $min || $min > $intervals->[ $other ]->[ 0 ] ) {
$min = $intervals->[ $other ]->[ 0 ];
$found_index = $other;
}
}
}
$found_index //= -1;
push @right, $found_index;
}
return [ @right ];
$CODE$
LANGUAGE plperl;
Task #1: PL/PgSQL Implementation
I use a temporay table to store the intermediate state of the evaluation.
CREATE OR REPLACE FUNCTION
pwc298.task1_plpgsql( matrix int[][] )
RETURNS int
AS $CODE$
DECLARE
r int;
c int;
ok boolean;
square int;
BEGIN
create temporary table if not exists t_squares( s int, from_row int, from_col int );
truncate t_squares;
for r in 1 .. array_length( matrix, 1 ) loop
for c in 1 .. array_length( matrix, 2 ) loop
if matrix[ r ][ c ] <> 1 then
continue;
end if;
square := 1;
ok := true;
<<restart>>
while ok and r + square < array_length( matrix, 1 ) and c + square < array_length( matrix, 2 ) loop
for rr in r .. r + square loop
if not ok then
exit;
end if;
for cc in c .. c + square loop
if matrix[ rr ][ cc ] <> 1 then
ok := false;
square := square - 1;
exit;
end if;
end loop;
end loop;
insert into t_squares
values( square + 1, r, c );
square := square + 1;
end loop restart;
raise info 'Fine while';
end loop;
end loop;
select max( s )
into r
from t_squares;
return r;
END
$CODE$
LANGUAGE plpgsql;
Note how long and verbose it is this implementation. Note also the usage of a label to stop a loop and restart over.
Task #2: PL/PgSQL Implementation
here, I cheated, and I passed the implementation to the PL/Perl one.
CREATE OR REPLACE FUNCTION
pwc298.task2_plpgsql( intervals int[][] )
RETURNS int[]
AS $CODE$
SELECT pwc298.task2_plperl( intervals );
$CODE$
LANGUAGE sql;
Task #1: Java Implementations
A nested loop based implementation. Note that I need to convert a monodimensional matrix into a bidimensional one, since PL/Java
does not allow for an int[][ type
.
@Function( schema = "pwc298",
onNullInput = RETURNS_NULL,
effects = IMMUTABLE )
public static final int task1_pljava(int[] plain_matrix, int cols ) throws SQLException {
logger.log( Level.INFO, "Entering pwc298.task1_pljava" );
int max_size = -1;
int matrix[][] = new int[ plain_matrix.length / cols ][ cols ];
// convert the plain matrix in a two dimensional matrix
for ( int r = 0; r < plain_matrix.length / cols; r++ )
for ( int c = 0; c < cols; c++ )
matrix[ r ][ c ] = plain_matrix[ r * cols + c ];
for ( int r = 0; r < matrix.length; r++ ) {
for ( int c = 0; c < matrix[ r ].length; c++ ) {
if ( matrix[ r ][ c ] != 1 )
continue;
int size = 1;
boolean ok = true;
while ( ok
&& r + size < matrix.length
&& c + size < matrix[ r ].length ) {
for ( int rr = r; rr <= r + size; rr++ ) {
if ( ! ok )
break;
for ( int cc = c; cc <= c + size; cc++ ) {
if ( matrix[ rr ][ cc ] != 1 ) {
ok = false;
break;
}
}
}
if ( size > max_size )
max_size = size;
size++;
}
}
}
return max_size;
}
Task #2: Java Implementations
Similar to PL/Perl implementation.
public static final int[] task2_pljava( int[] plain_intervals ) throws SQLException {
logger.log( Level.INFO, "Entering pwc298.task2_pljava" );
int index = 0;
int intervals[][] = new int[ plain_intervals.length / 2 ][ 2 ];
for ( int i = 0; i < plain_intervals.length; i++ ) {
intervals[ index ][ 0 ] = plain_intervals[ i ];
intervals[ index++ ][ 1 ] = plain_intervals[ ++i ];
}
int return_values[] = new int[ intervals.length ];
index = 0;
for ( int current = 0; current < intervals.length; current++ ) {
int current_min_value = Integer.MAX_VALUE;
int current_min_index = -1;
for ( int other = 0; other < intervals.length; other++ ) {
if ( other == current )
continue;
if ( intervals[ other ][ 0 ] >= intervals[ current ][ 1 ] ) {
if ( current_min_value > intervals[ other ][ 0 ] ) {
current_min_value = intervals[ other ][ 0 ];
current_min_index = other;
}
}
}
return_values[ index++ ] = current_min_index;
}
return return_values;
}
Task #1: Python Implementations
Same implementation as in PL/Perl
, but note the usage of x
as a character to split the list of arguments into a matrix.
import sys
# task implementation
# the return value will be printed
def task_1( args ):
matrix = []
row = 0
col = 0
# transform into a matrix
line = []
for x in args:
if x == 'x':
matrix.append( line )
line = []
continue
line.append( int( x ) )
max_size = 0
for row in range( 0, len( matrix ) ):
for col in range( 0, len( matrix[ row ] ) ):
if matrix[ row ][ col ] != 1:
continue
size = 1
found = True
while found and ( row + size ) < len( matrix ) and ( col + size ) < len( matrix[ row ] ):
for rr in range( row, row + size ):
for cc in range( col, col + size ):
if matrix[ rr ][ cc ] != 1:
found = False
break
if not found:
break
if size > max_size:
max_size = size
size = size + 1
return max_size
# invoke the main without the command itself
if __name__ == '__main__':
print( task_1( sys.argv[ 1: ] ) )
Task #2: Python Implementations
Similar to the PL/Perl
implementation, use again a x
character as a marker to convert a flat list into a matrix.
import sys
# task implementation
# the return value will be printed
def task_2( args ):
intervals = []
current = []
other = []
indexes = []
for x in args:
if x == 'x':
intervals.append( current )
current = []
continue
current.append( int( x ) )
intervals.append( current )
print( intervals )
for current_index in range( 0, len( intervals ) ):
min_value = 999999
min_index = -1
for other_index in range( 0, len( intervals ) ):
if other_index == current_index:
continue
current = intervals[ current_index ]
other = intervals[ other_index ]
if other[ 0 ] >= current[ 1 ]:
if min_value > other[ 0 ]:
min_value = other[ 0 ]
min_index = other_index
indexes.append( min_index )
return indexes
# invoke the main without the command itself
if __name__ == '__main__':
print( task_2( sys.argv[ 1: ] ) )
If you have any suggestion then please do share with us perlweeklychallenge@yahoo.com.